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[1] The main objective is to determine the three stages of the life of a thrust in an
accretionary wedge which are the onset of thrusting along its ramp, the development
with the construction of the relief, and the arrest because of the onset of another thrusting
event. A simple kinematics is proposed for the geometry of the developing thrust fold
based on rigid regions separated by velocity discontinuities along which work is
dissipated according to the Coulomb criterion. The evolution of the thrust fold satisfies
mechanical equilibrium and is optimized at every time of the three stages to provide the
least upper bound in tectonic force according to the maximum strength theorem. The
development of the thrust or its arrest because of the initiation of another thrust is decided
by selecting the event which leads to the least upper bound in tectonic force. The approach
is first validated by proving that the critical slope angle a.. for the classical triangular
wedge is properly captured. It is shown that a perturbation, in the form of an extra relief in
this perfectly triangular geometry, leads to the onset of thrusting with the ramp or the
back thrust outcropping either at the back or to the front of the perturbation, respectively,
for a range of slope dip close to the critical angle ... The study of normal thrust sequences
(from the rear to the front in the wedge toe) reveals that weakening of the ramp,
accounted for by changing its friction angle from an initial to a smaller final value, is
necessary for each thrust to have a finite life span. This life span is longer with a larger
relief buildup for more pronounced weakening. Decreasing the décollement friction
angle results in an increase in the number of thrusts in the sequence, each thrust creating
milder relief. The normal sequence is ended with the first out of sequence thrust which
occurs earlier for smaller weakening over the ramp. The proposed methodology is
partly used to construct an inverse method proposed to assess the likeliness for the transfer
of activity from the active to the incipient thrust in a section of Nankai’s accretionary
wedge. The inverse method provides the initial friction angle over the incipient ramp and

the final friction angle over the fully active ramp, from the geometry of the
corresponding thrusts, and the topography. It is shown that the friction angle over the
incipient ramp is most likely to be larger then the one over the active ramp, justifying a
key hypothesis needed to predict discrete sequences of thrusting.

Citation: Cubas, N., Y. M. Leroy, and B. Maillot (2008), Prediction of thrusting sequences in accretionary wedges, J. Geophys. Res.,

113, B12412, doi:10.1029/2008JB005717.

1. Introduction

[2] The objective of this research is to propose simple
quantitative methods to study the development of multiple
thrusts in accretionary wedges and fold-and-thrust belts.
The method should require less computational times than
the finite element method so that repeated (thousands) tests
can be performed, typically in inverse analyses. It should
also provide quantitative predictions of the position and dip
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of the active thrusts, a task which cannot be performed with
classical geometrical models of folding.

[3] Predicting fault patterns in accretionary wedges has
its roots in the stability of a perfect triangular wedge.
Faulting occurs according to the active and passive Rankine
stress states, as shown analytically by Davis et al. [1983],
Dahlen [1984], and with a Mohr construction by Lehner
[1986]. The main result is that there is a critical taper value
above which the entire décollement is activated upon
compression from the back stop. The wedge is said to be
unstable for angles below that critical value and the defor-
mation is then to the rear. This reasoning applies to the onset
of failure in a perfectly triangular prism and is not valid for
any irregular topography. Note that at the critical taper, the
fault positions are undetermined if the failure criterion is
cohesionless [Dahlen, 1984]. Introducing bulk cohesion
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sets in a characteristic length scale, leading Yin [1993] to
predict the position of the first thrust in the triangular
wedge, using the stress approach proposed by Hafner
[1951] for linear elastic materials. The elasticity solution
for irregular topography is still possible if the variations in
slope are small, permitting the application of linear pertur-
bation techniques [McTigue and Mei, 1981]. This approach
combined with a numerical solution by Fast Fourier Trans-
form leads Panian and Pilant [1990] to predict that first
failure is below the topographic front of the wedge.

[4] These solutions cannot however be applied for thrust-
ing beyond the onset. The first prediction of a complete
thrusting sequence seems to be due to Platt [1988, 1990]
based on simple geometrical rules, reminiscent of Suppe’s
construction [Suppe, 1983] and on an insight on the stress
distribution. He also predicts that the position of the new
thrust is controlled by the topography. The active thrust
within the sequence is then chosen to keep the entire wedge
close to the critical taper. Another approach is proposed by
Outtani [1996], Hardy et al. [1998], and Masek and Duncan
[1998], who control the thrusting evolution by comparing
the various potential scenarios in terms of dissipation. The
thrusting leading to the least dissipation by friction over
predefined discontinuity segments [Masek and Duncan,
1998] is favored at any step of the shortening. Similar ideas
are found in the work of Gutscher et al. [1998] who
compare tectonic forces to decide when frontal deformation
would overcome underthrusting.

[5] These force or dissipation criteria are not the outcome
of mathematical theorems and should thus be used with
great care, with experimental or field validation, as done by
numerical means by Del Castello and Cooke [2007]. They
could be avoided if the full solution of the boundary-valued
problem was constructed by numerical means with, for
example, the application of the finite element method.
Results for a single thrust are found in the work of Erickson
and Jamison [1995] and Erickson et al. [2001] providing
insight on the orientation of a series of back thrusts for a
predefined ramp. Finding the position of the ramp requires
to solve a strain localization problem until a sharp discon-
tinuity is formed. Following the thrust development over the
ramp necessitates contact algorithm for finite displacement
jumps. These two tasks are technically problematic and
remain debated topics in an active research area, as already
mentioned 20 years ago by Platt [1988], requiring difficult
comparisons of different implementations of related formu-
lations [Buiter et al., 2006]. Moreover, one looses with the
numerical codes the simplicity of analytical solutions and
the possibility to conduct the thousands of iterations re-
quired for inverse methods [Maillot et al., 2007].

[6] There is thus a gap between the efficient, simple
geometrical constructions of thrusting, as proposed by
Suppe [1983], and the computer-intensive mechanical sol-
utions. These geometrical models are playing a crucial role
in the interpretation of seismic sections and are applied in
the industry [Zoetemeijer and Sassi, 1992; Sciamanna et al.,
2004]. One way to reconcile the mechanics approach and
the geometrical constructions is to follow the steps of Platt
[1988, 1990] and Hardy et al. [1998] and to accept the
kinematics, proposed by the structural geologists, which
then does not have to be an outcome of the mechanics
problem. However, one should define a sufficient number of
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degrees of freedom in the kinematics (such as position and
dip of faults) which could then be optimized to satisfy
mechanical equilibrium and rock rheology constraints rather
then be arbitrarily prescribed. This strategy was first con-
sidered for a single thrust ramp by Maillot and Leroy [2003]
who relied on the minimum dissipation principle to orien-
tate the back thrust. A more rigorous and general approach
is offered by the application of the external approach of
limit analysis [Salen¢on, 1974], classically used in soil
failure analysis. A kinematically admissible (KA) velocity
field is proposed and the estimated maximum internal
power combined with the theorem of virtual powers leads
to an upper bound in the tectonic force. The core of the
method is the recognition that the stress, within the bulk
material, or the stress vector, acting on discontinuities, is
always within a convex domain of the stress space, referred
to as the strength domain. Its boundary is, typically, the
Coulomb failure criterion. This method relies on the max-
imum strength theorem, so-called to emphasize that only
strength is involved with no appeal to a complete plasticity
theory, and in particular to the flow rule. The new twist to
the external approach [Maillot and Leroy, 2006] is that the
least upper bound is not searched in the space of KA
velocity fields only but in an extended space which includes
the main geometrical features of the structures, which are
the degrees of freedom alluded to above. These authors
studied the development of a symmetric kink-fold parame-
terized by its amplitude. For each amplitude, their predicted
geometry is the one providing the least upper bound in
tectonic force. The optimized degrees of freedom are the
kink dip as well as the dip of the two parallel hinges setting
the kink boundary. Their selection warrants a unique kink
geometry for a given amplitude. This strategy is applied
here to the growth of accretionary wedges. We adopt a
simple geometrical construction reminiscent of the fault-
bend fold model [Suppe, 1983] whereby shortening results
in rigid block translations along the basal décollement and
the ramps. At any shortening increment we optimize the
position and dips of the ramp and hinge (seen as a back
thrust in this paper) of the active thrust.

[7] The paper contents are as follows. The next section
presents the maximum strength theorem for the onset of
thrusting first in a perfect triangular wedge, for which there
is an analytical solution permitting to validate our approach,
and second in a perfect wedge with a topographic pertur-
bation which can control the position of the active thrust.
The third section is devoted to the complete study of a thrust
from its onset to its arrest due to the onset of a more
favorable thrust accounting or not for relief buildup. It is
seen that this relief leads to an increase in the upper bound
in tectonic force which is inconsistent with a finite life span
of the thrust. To palliate this inconsistency, a weakening of
the ramp is introduced in the form of a decrease in its
friction angle from an initial to a final value which leads to a
decrease in the tectonic force. This decrease due to ramp
weakening dominates initially over the increase due to relief
buildup, resulting in a finite life span of every thrust. The
fourth section presents the predictions for a normal se-
quence of thrusting (i.e., in the sense of Morley [1988],
from the rear to the front within the wedge toe) ending with
the prediction of the first out-of-sequence event. The fifth
section is devoted to the construction of an inverse method
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Figure 1.

(a) The names adopted for the different regions of the accretionary wedge are defined. (b) The

main mathematical symbols and variables are illustrated. Note that the top surface of the prism may have
an arbitrary relief » measured from average the slope dipping at «. (c¢) For a zero thickness toe, the wedge
is triangular in shape, providing a simpler example to introduce the maximum strength theorem.
(d) Compatibility of the virtual velocity field is illustrated by the hodogram which states graphically that
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to assess the likeliness for the transfer of activity from
the active to the incipient thrust in the section through the
Nankai accretionary wedge corresponding to the seismic
line NT62-8 studied by Moore et al. [1991] and by Morgan
and Karig [1995]. The transfer requires the concomitant
activity of the two structures which is marked by the same
upper bound in the tectonic force. This equality of the
bounds for the two structures defines the likely ranges of
the initial and the final friction angles over the ramps of the
incipient and active thrust, respectively. This application
shows the necessity to introduce the concept of weakening
to reconcile theory and observations. Strain softening, well
known in the laboratory, becomes then tentatively justified
at the field scale.

2. Onset of Thrusting Based on the Maximum
Strength Theorem

[8] The main objective of this section is to present the
maximum strength theorem with the help of a simple
example, the onset of a thrust: a rigid back stop is sliding
over a décollement up to the root of the ramp. Material in
the hanging wall, separated from the back stop by the back
thrust (migrating hinge), is moving up parallel to the ramp
(Figure 1a). We will determine the dips 6 and  of the back
thrust and ramp, respectively, as well as the position of the

base of the ramp, defined by the distance d from point A’ to
G (Figure 1b). In this section, it is the simplified geometry
of Figure 1c which is considered: the wedge is triangular in
the absence of any toe.

2.1. Geometry, KA Velocity Field, and Equilibrium

[¢9] The triangular-shaped wedge occupies the region
ABC in Figure Ic and defines the studied domain
referenced as (). The taper is the angle o + 8 where «
corresponds to the slope of the topography and 3 to the dip
of the décollement. The length of the wedge is measured
along the horizon AA4” and denoted D. The onset of
thrusting is due to the compression by the rigid wall along
segment BC perpendicular to the décollement. It results in
slip of the back stop (region GFBC) over the segment GC of
the décollement. Material in region EFG, defining the
hanging wall, is sliding over the ramp EG. The segment
GF marks a discontinuity in the velocity field which is the
back thrust. It should also be seen as a migrating hinge since
materials from the back stop are crossing it to reach the
hanging wall. An important assumption adopted throughout
the paper is that every material block undergoes rigid body
motion. Thus a material point from the back stop region
would be translated toward the back thrust, be sheared when
crossing it, and then be translated again parallel to the ramp.
(This kinematics is typical of a “push” theory. It is shown in
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the auxiliary material’ that the “pull” theory, as defined by
Dahlen and Barr [1989] and corresponding to an immobile
back wall, would lead to the same results as those presented
here. This kinematics is also the simplest to construct
geometrically a fold. One could envision to account for
other modes of deformation and apply the same strategy in
terms of optimization.) We concentrate first on the onset of
thrusting. Evolution due to actual slip on the thrusts is
developed in section 3. The rigid wall transmits the tectonic
force QOtp, in which t, is the unit vector tangent to the
décollement and Q the positive scalar for which we seek an
upper bound (Figure 1c). Vectors in Figure 1c and in what
follows are denoted by bold characters.

[10] The full mathematical development of the method at
the center of this contribution is found in the work of
Maillot and Leroy [2006] and based on the seminal work
of Salengon [1974, 2002]. Only the main steps of the theory
through its application to the wedge of Figure lc are
presented here for sake of conciseness.

[11] The concept of mechanical equilibrium is first
appealed to with the theorem of virtual powers which states
the equality between the internal and external virtual powers,
two quantities which are now defined. The internal virtual
power P; is the power due to all gradients or discontinuities
in the virtual velocity field. The virtual velocity field is any
velocity field which satisfies the boundary conditions. Any
such field U is called kinematically admissible (KA) and is
designated with a superposed hat. In agreement with the
assumption of rigid body motion, we will only consider here
constant KA velocity fields over each block. In this case, the
internal virtual power is only performed over the velocity
discontinuities, which are the ramp (EG), the back thrust
(GF), and the décollement (GC). The discontinuities or
interfaces are oriented by their normal n,, the subscript a
being either R, B, or D, for the ramp, the back thrust or the
décollement, respectively (Figure 1c). A set of virtual
velocities is illustrated in Figure lc: the hanging wall has
the virtual velocity Uy and the back stop, Us. The
velocity discontinuity, or velocity jump, across any discon-
tinuity, is the difference between the velocities on the
positive side and on the negative side. Thus, the velocity
jump across the décollement is Jp = Ug since the
velocity of the foot wall is zero with respect to the observer
attached to the décollement. For the same reason, the
velocity jump across the ramp is Jz = —Uy, and that
across the back thrust is Jz = Uy — Ug. Note that these
virtual velocities do not describe necessarily the actual
motion of the blocks and any KA velocity field could be
used in the theorem of virtual powers.

[12] If the stress vector T = o-n, (o is the Cauchy stress
tensor, and any second-order tensor is in bold character) was
known for each discontinuity, one could readily compute
the internal virtual power as the product of T by the
velocity jump: J-T. The sum of the independent contribu-
tions of each discontinuity would then define the internal
power

P:(0) :/Z J - Tds, (1)

'Auxiliary materials are available in the HTML. doi:10.1029/
2008JB005717.
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in which X denotes the set of velocity discontinuities just
defined. The external virtual power

P.(U0) = — / pge; - UdV + Oty - Us, )
Q

is due to gravity acting over the whole domain 2 (volume
integral, first term on the right-hand side) and the tectonic
force applied on the right boundary. In this equation, p is the
material density, assumed to be constant over the
whole domain and —ge, is the gravity acceleration. Note
that {e;, e} is the orthonormal basis defined in Figure Ic.
The theorem of virtual powers states that internal and
external virtual powers are identical for any KA velocity
field

Pi(U) =P.(U) VUKA (3)

Note that the main difficulty in solving (3) is that the system
of stress vectors T acting on the discontinuities found in (1)
is not known a priori. It will be seen next that one can obtain
an upper bound to the internal virtual power, and therefore
to the tectonic force Q, without ever determining this
system.

2.2. Material Strength Domain and the Support
Function

[13] The discontinuities in the velocity field and the
boundary interfaces are assumed to be purely frictional.
Their strength is a function of the resolved shear stress 7’
and normal stress o, defined as

=t-T, o =n, T, (4)

in terms of the stress vector. The discontinuity can sustain

any stress states found in the following Coulomb strength
domain G defined by

|| + o/ tan @, < ¢4, (5)

in which ¢, and ¢, are the friction angle (the friction
coefficient p, = tan ¢, will also be used and its value
indicated between parentheses) and the cohesion of the
discontinuity a. Such a strength domain is illustrated in
Figure 2. Note that the engineering convention where o,, < 0
in compression is used here. Equality in (5) defines the
Coulomb failure criterion, i.e., the maximum strength of the
discontinuity. The terminology of strength domain could be
surprising to the reader accustomed to the concept of elastic
regime or domain. Since no assumption concerning the rock
elasticity properties is introduced, the term strength domain
is found more appropriate.

[14] The next step consists of searching for the maximum
internal power at every point of the fault for a given jump J,
which is defined by

@) = Sup {J- T} (6)

FF{eG

Note that all T' in G are considered in the search and no
reference is made to the exact but unknown stress vector.
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Figure 2. The Coulomb strength domain, the definition of
the orientation of the virtual velocity jump J with respect to
the normal to the discontinuity in inset, and the orientation
zoning for defining the support function. The (o,,7) stress
space is oriented physically with the normal n and the
tangent t vectors to the discontinuity (m, t) direct basis. It is
only if J is oriented toward region 1 that the support
function is finite. By symmetry of the strength domain, the
same results are obtained for v < 0.

The maximum w(j) exists because the strength domain is
convex and contains the zero stress vector; it is called the
support function in convex analysis [Salengon, 1974, 2002;
Maillot and Leroy, 2006]. The orientation of the velocity
jump J is measured as the angle v with the normal FFrn,
(inset in Figure 2). For simplicity, Figure 2 illustrates the
case 0 < v < m, but the same treatment holds for —m < v
< 0, owing to the symmetry of the strength domain. Two
cases indicated as (1) and (2) are defined by the
comparison of v with /2 — ¢,. The support function
reads accordingly

Jeqcotan(¢, ) cos v,

400, (7)

case(1): |v| < 7/2 —¢,, @ ()
W] > /2~ ¢, w(I) =

case (2) :

for ve [—m; 7). Note from (7) that there is a range of
orientations in the velocity jump (case 2) which is of no
interest since it does not lead to a finite upper bound. This
angular range is presented as a dashed region in the inset of
Figure 2c. It is also presented in Figure 1c as dashed cones
for each discontinuity. The angles +(n/2 — ¢,) will be
referred to as the velocity cone angles. Note that the
maximum in (6) is a function only of the vector J and, of
course, of the strength parameters ¢, and ¢, defining G, but
not of the exact unknown stress vector T.

2.3. Maximum Strength Theorem and Upper Bound
on the Tectonic Force
[15] The introduction of the support function (6) allows

us to establish an upper bound of the internal virtual power
(1) which reads

PiU) < Jy, Sup (3-1'}as = fy, w(@)ds.  (8)
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The theorem of virtual powers (3) together with the
definition of the external power (2) then provide

Oty - Ug §/pge2-fjdV+/ w(J)ds, (9)
Q Su

leading to an upper bound in the tectonic force Q. The best
upper bound is defined as the least upper bound since it is
the closest to the exact solution. It is obtained by
minimizing the right-hand side of (9) seen as a function
of the two virtual velocities Ug and Uy, the two angles 6 and
7, and the position d of the root of the ramp and back thrust.
Before proceeding to this optimization, we need an explicit
expression for the upper bound (9) in terms of these
variables, starting with the velocities.

[16] The first velocity vector to be discussed is the virtual
velocity of the back stop. It has for norm Ug and is oriented
with the velocity cone angle v = 7/2 — ¢p. The second
virtual velocity vector is Uy and is oriented such that the
velocity jump across the ramp Jz = — Uy, has the orientation
defined by the velocity cone angle (v = w/2 — ¢z), to
minimize work against gravity over the hangmg wall.
Another constraint on the norm of Uy is found by
imposing that the velocity jump vector across the back
thrust Jz = Uy — Ug is oriented with the velocity cone angle
v = —m/2 + ¢p. These conditions and constraints are
reproduced in the hodogram presented in Figure 1d which
leads to

~ oosin(ép 4+ dp + B+ 0)
UH?USSin(¢B+¢R+’V+9)7

(10)
as well as

~ sin(¢r — ¢p +7—0)
Ssin(¢g + g+ +0)

Jg = (11)

by application of the law of sines. Note that the
mathematical proof that the selections of the velocity cone
angle v = /2 — ¢,, for orienting the velocity jumps over the
ramp and the décollement, and of the angle v = —7/2 + ¢p
for the jump on the back thrust do minimize the upper
bound is not provided here for sake of conciseness. This
proof is the result of an exercise in optimization with
constraints and is presented in the auxiliary material.

[17] The expression for the tectonic upper bound (9) is
now made explicit in terms of the geometry of the triangular
shaped wedge and its material properties

sin(¢g + ép + B+ 0)
sin(¢p + ¢p + v+ 0)
+ Sg sin(¢p + ﬁ)}

sin(¢g + ¢p + 5+ 6)
(¢B+¢R+w+6)LR+CD°°S¢D

(Dsoxf =)+ epsonty T

(12)

Ocos ¢p < pg {SH sin(¢pp + )

+ cg cos (Z)R
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in which Sy, Ss, Lz and Lg denote the surface of the hanging
wall, of the back stop (Figure 2¢) and the length of the ramp
and of the back thrust, respectively. Note that the two sides
of (9) have been divided in (12) by the positive scalar Ug
which is arbitrary.

2.4. Least Upper Bound on the Tectonic Force
for a Perfect Triangular Wedge

[18] The upper bound in (12) is now minimized in terms
of d, 6 and ~ for the triangular wedge. In that case, the
surfaces and length introduced in (12) are readily computed
and the upper bound becomes a second-order polynomial in
the normalized distance d defining the position of the root
of the thrust

0(0,7,d) < 01 + 0:(0,7)d + 0s(0,7)d’
1 cos? Btan(a + 3) sin(¢p + B)
2 cos ¢p

- sin(a + )
02(0,7) = —cp + cos ¢p sin(dg + ¢ + v+ 6)

. [% Sin(¢B + QZ)D + ﬁ -+ H)E'R

i sl = 0+~ A

B sin(a + 3) . )
03(0,7) = 3 cos o sin(0 — ) {* sin(¢p + 3) sin(3 + 0)

sin(a + 3) sin(0 + )
sin(a + )
sin(¢p +ép + 0 + 0)]
sin(¢p + ¢p + v+ 0) ]’

with Q) = +cosBep,

- sin(¢p +7) (13)

in which the superposed ~ designates dimensionless
quantities which are obtained by dividing lengths and
stress-like quantities by the reference length D and the stress
pgD, respectively. The scalar Q; in (13) is due to work done
against gravity (for the whole structure of characteristic
length D) and the work done along the segment GC of the
décollement cohesion. It is independent of the angles 6 and
~. The scalar O, in (13) is due to the cohesion of the
interfaces and discontinuities since the internal power is
then proportional to the length of these lines. The last scalar
Qs is due to gravity and thus associated to the square of d.
_[19] The least upper bound is obtained by minimizing
0(0, v, d) in terms of its three arguments, an exercise done
by numerical means in this paper. However, for the partic-
ular expression in (13), and letting O, vanish by assuming
no cohesion along the interfaces and discontinuities, the
critical d is readily obtained analytically. It depends on the
sign of 0. If positive, the best candidate is 0. If negative, d
takes the maximum value consistent with the rooting of the
ramp and the back thrust on the décollement. All values of d
are admissible if Q5 = 0. This particular solution, computed
by numerical means for the optimum 6 and ~, is compared
to the exact Rankine solution proposed by Dahlen [1984]
and constructed geometrically by Lehner [1986], in Figure 3.
The orientation of the ramp is exactly given by

—larcsin sina +Q+E,ﬁ
773 sinog) 24 2

(14)
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and the dip of the back thrust is simply the conjugate
orientation (if the same friction coefficient is assumed, ¢5 =
¢g). Our solutions in Figure 3a coincide within numerical
accuracy to this exact solution. For a zero slope «, the
orientation is the classical 7/4—¢g/2. For increasing «, the
dip of the ramp decreases. These results are plotted for three
different values of the ramp friction angle. Each set of
curves terminates as the optimum value of d shrinks to zero,
corresponding to the activation of the whole décollement.
This transition is found to occur as Qs is zero, for a critical
a, which is compared to the implicit solution proposed by
Dahlen [1984]

a. + arcsin(sm a”) = —23 + arcsin (sm ¢D) —¢p,  (15)

sin ¢y sin ¢p

in Figure 3b for ¢p = 15° (0.27). Note again the complete
agreement between our numerical solution and the exact
one for three different values of the ramp friction angle.
This comparison validates the numerical approach for the
optimization to be used throughout this paper.

[20] This comparison with Dahlen’s [1984] solution gives
us the opportunity to define some of the terminology used in
this paper and illustrated in Figure 3b. First, we are
interested in compressional deformation and the wedge is
said to be critical if the taper (o + () is Dahlen’s solution.
For smaller angles, the taper is said to be subcritical and the
deformation takes place to the rear of the wedge. For larger
tapers, the conditions are said to be supercritical and the
whole décollement is fully activated. Consequently, the
domain of stability defined by Dahlen [1984], with no
internal deformation in the wedge, corresponds to super-
critical conditions in this paper.

[21] The last item of discussion is the influence of the
material cohesion on the critical slope «.. The décollement
cohesion is still set to zero but the back thrust and the ramp
cohesions are varied from zero to 0.035pgD. Results,
presented in Figure 4, exhibit a sharp decrease of the critical
slope a, with the increase in cohesion. The more cohesive
the material is, the smaller is the slope necessary to trigger
the activation of the whole décollement. These results,
obtained by numerical means by minimizing Q are com-
plemented by the following interpretation of equation (13).
Coefficient O, is always positive since ¢, is set to zero. If
Qs is positive or null, the Q function is monotonically
increasing, its smallest value reached for d = 0. The wedge
is supercritical. For Q3 negative, the QO — d curve is
parabolic. The maximum is between d = 0 and d = D cos
0, disregarding geometrical constraints on the back thrust
for sake of simplicity, and for sufficiently small, negative
values of Q5. There is a critical value of O3 = —0,(D cos 3)
for which the load Q is identical at d = 0 and d = D cos (3.
For even smaller value of Os, the load is the smallest at d =
D cos (3. The wedge is then subcritical. The critical con-
ditions are thus now defined not for Q3 = 0, for cohesionless
materials, but for Q3 = —0»(D cos (3) in the presence of
cohesion. However, the transition is marked in the presence
of cohesion with failure to the front and to the back but not
at an arbitrary position within the bulk. The introduction of
cohesion thus suppresses the arbitrary position of the failure
mechanism for critical taper conditions.
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Figure 3. Comparison of the solution for the least upper bound and the exact solution of Dahlen [1984]
for various ramp friction angles (¢z) and for basal friction ¢p = 15° (0.27). (a) The dips of the ramp
(7, solid lines) and of the back thrust (6, dashed lines) are presented as functions of the surface slope.
(b) The critical value of the slope is presented as a function of the dip of the décollement (. In all cases,
the exact and numerical solutions superpose within plotting accuracy.

2.5. Imperfection Analysis of the Triangular Wedge

[22] A second approach is now considered to suppress the
arbitrary position of the failure mode for critical taper
conditions. It consists of the introduction of an imperfection
in the topography. Consider a triangular zone of relief with
summit point P at the distance 7p from the top surface
(set to an arbitrary 440 m here, with D = 100 km, 3 = 0°).
The slope of the triangle is set to 10° with respect to the
wedge surface. Point P is at the distance £p from the tip of
the wedge (Figure Sa).

[23] Results will be interpreted as the competition be-
tween two major failure modes. Mode 1 consists of the
activation of the whole décollement, typical of supercritical
wedges. Failure in mode 2 is at the rear and is typical of
subcritical wedges, the ramp either cutting through or not
cutting through the imperfection, as illustrated in Figure 5c.
The activated sections of the décollement and the ramp are
in thick solid line; the back thrusts are depicted as dashed
lines. A third mode is also introduced and results from the
competition between the two first modes and is defined by
the locking of the thrust on the imperfection. There are two
variants labeled 3’ and 3" for which the ramp and the back
thrust are locked at the back or the front of the imperfection,
where the slope is discontinuous, respectively. ~

[24] The range of surface slope «, for which the length d
is neither zero nor maximum, is presented as a function of
the position {p(= /D) of the imperfection in Figure 5b.
This range is called the imperfection locking range in this
section and corresponds to the regions labeled 3’ and 3" in
the graph. Consider for example &p set to 20 km (£ = 0.2).
The locking range in « has for lower and upper limits o, =
5.38° and 5.6°, respectively. For « larger then the upper
limit, the whole décollement is activated: failure mode 1
dominates and the wedge is supercritical. Below that upper
limit, there is competition between failure modes 1 and 2,
resulting in the variant 3’. The more to the front is the
imperfection, smaller values of &p, the longer is the length of

the décollement activated and the larger is the locking
range. The lower limit in the locking range is «., for any
perturbation position less than 72 km from the tip of the
wedge toe. For a smaller than «, the failure mode is of type
2, at the back of the wedge which is then subcritical. For
imperfection positions &p larger than this critical value of
72 km, the upper limit of the locking range is constant,
5.375°, so slightly lower than «.. The lower limit decreases
with increasing {p The interpretation is as follows. For «
larger than the upper limit, the whole décollement is activated
corresponding to failure mode 1, typical of a supercritical
wedge. Note that the imperfection contributes to the weight
of the thrusting section of the wedge, explaining the slight
difference in the upper limit from .. For o smaller than

Critical surface slope o (deg)

0 | | |
0 0,01 0,02 0,03

Dimensionless cohesion Cp,

Figure 4. Influence of the cohesion of the ramp and back
thrust (cz = cg, cp = 0), on the critical slope.
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Imperfection analysis for the triangular wedge. (a) The asperity geometry is presented with

the distance &p defined as the distance 4P’. (b) The locking range of the imperfection in slope « is
function of the imperfection position &p. (¢) Three modes of failure are defined: full décollement activated
for a supercritical wedge (mode 1); deformation to the rear, typical of a subcritical wedge (mode 2); and
the locking mode, with two variants (modes 3’ and 3”). They correspond to the ramp or the back thrust
outcropping at the rear or to the front of the imperfection, respectively.

5.375°, the wedge ceases to be supercritical, the variant 3” is
then observed and the imperfection is thus locking the thrust.
The lower limit in the locking range marks the onset of the
dominance of mode 2, typical of subcritical wedges. Note
that the locking range as well as the critical distance of 72 km
are functions of the imperfection mass and thus of the height
np. Repeating the analysis for smaller 7p’s reveals that the
locking range tends to a single point ..

[25] This simple example has at least two merits. First, it
shows the potential of the proposed methodology in the
absence of analytical solutions. Second, it reveals that
minute changes in the topography of the top surface could
lead to drastic changes in the position of the active ramp
within the wedge if close to criticality.

3. Thrust Folding Based on the Maximum
Strength Theorem

[26] The objective of this section is to discuss the evolution
of a thrust starting with the simple case where the top surface
and the décollement have a zero slope. The initial distance of
the ramp to the back stop is then arbitrarily set to D.

[27] It is first assumed that erosion is fast such that no
relief builds up despite the shortening of the back stop
(Figure 6a). This simple geometry permits investigation of
the influence of the ramp friction coefficient on the orien-
tation of the back thrust and is reminiscent of the example
treated by Maillot and Leroy [2003] and Maillot et al.
[2007]. The second example disregards erosion and the
relief is constructed assuming the hanging wall glides
rigidly over the ramp, except for the material forming the
forelimb (Figure 6b). The relief » is such that the surface

area is preserved during compression. Material and geomet-
rical parameters are summarized in Table 1 (third column).
Note that all cohesions are set to zero in what follows.

3.1. A Simple Thrust Fold With Fast Erosion

[28] This example is proposed to test the influence of the
friction angle over the ramp. This angle is either kept
constant during thrusting or chosen to decrease linearly
from an initial value ¢g; to the final value ¢p, after a
transition defined by the distance 67 in accumulated dis-
placement over the ramp 6z (Figure 6¢). Note that the
friction angle of the back thrust is always kept constant,
equal to the friction angle of the pristine, bulk material,
because the material within the back thrust is displaced from
the back stop toward the hanging wall with no time to
sustain the damage occurring over the ramp by the residing
material. This difference is essential to justify the different
treatment adopted for the friction angles of the ramp and the
back thrust during evolution. Note also that softening could
have been also introduced on the material cohesion or on
both the cohesion and the friction angle. These alternative
approaches could be of interest if one has experimental
results on the analogue material properties and desires to
apply the inverse method presented in section 5 to labora-
tory experiments, such as those of Lohrmann et al. [2003].
Simplicity guides us in selecting the linear softening con-
struction on the friction angles.

[29] The geometry of the hanging wall during the evolu-
tion remains unchanged, except for the shortening: material
points in the back stop are first displaced horizontally by 6,
cross the back thrust GF, then move in the hanging wall
parallel to the ramp and are eroded away at their arrival on
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Figure 6. The first two examples of evolution concern a
thrust initiating from a layer of thickness H (the angles «
and 3 of Figure 1 are zero). (a) Erosion is fast such that no
relief builds up. (b) The relief is composed of the plateau
E'F’ and a forelimb, the latter corresponding to the collapse
of the tip of the hanging wall over the upper flat. (c) The
friction coefficient over the ramp decreases from an initial
value ¢p; to the final value ¢gs after a displacement of 67
(d) The hodogram for the velocity jumps of the disconti-
nuity associated with the forelimb is presented.
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segment EF. This similarity of the geometries means that the
upper bound in tectonic force is still given by (12) in which
lengths and surfaces take simple expressions leading to

7 H sin(¢p + ¢p + 0)
<
Qcos ¢p > (cotan v + cotan 6) Sin(; 471 0)

~ -~ H
-sin(¢g + ) +H<1 —6— Ecotan9>

. - sin(¢p +¢p+0) H
S G R COS O G+ g 7+ 0) Sin7

+epcos dp (1 — ) +&pcos oy sirir;(fi ;5:5:)- —’: ‘7‘)9)

(16)

H
sing’

The least upper bound in force (16) based on the optimum
orientation of the back thrust is presented in Figure 7a for
different values of the final friction angle ¢gs The dashed
line shows that for a constant friction coefficient over the
ramp, the upper bound in tectonic force decreases linearly
with increasing 6, as seen from (16). This is due simply to
the erosion of the mass of the relief created during the
thrusting event. This decrease is magnified if the activation
of the ramp leads to a reduction in its friction angle. Note
that once the final friction angle is reached the evolution of
the three solutions are parallel for the reason discussed
above. Note also that according to (16), the shortening of
the décollement (first term in third line) should also lead to a
reduction in the upper bound. This influence is however not
felt here since all cohesions are set to zero (Table 1, third
column). Attention is now centered on the influence of the
reduction in the friction coefficient on the variation of the
orientation of the optimum back thrust. This influence is
analyzed from the results presented in Figure 7b: the back
thrust dip varies from 30° to 45° for a ¢g, of 10° (0.18).
Note that once the ramp weakening ceases, the back thrust
dip remains constant, showing that it is independent of the
extent of the back stop, as predicted by Maillot and Leroy
[2003].

Table 1. Definition of Parameters and Their Values or Ranges for the Study of the Single Thrust With Fast Erosion or Relief Buildup in

Section 3 and of the Sequence of Thrusting in Section 4°

Symbol Definition Value (Single) Value (Sequence) Unit
@ topographic initial slope 0 [4.5°% 7.5°] deg
Ié; slope of décollement and 0 [0° 3°] deg
Loy friction angle of bulk and back thrust 30° (0.58) 30° (0.58) deg
op friction angle of décollement 15°(0.27) [5° (0.09); 15° (0.27)] deg
Ori initial friction angle of the ramp (= ¢p) 30° (0.58) 30° (0.58) deg
Ors final friction angle of the ramp [10° (0.18); 30° (0.58)] [15°(0.27); 25° (0.47)] deg
On friction angle of normal fault (= ¢5) 30° (0.58) 30° (0.58) deg
ou friction angle of the upper flat ( = ¢p) 15° (0.27) [5° (0.09); 15° (0.27)] deg
Cq cohesions (¢ = R, U, D, B and N) 0 0 MPa
o7 displacement transition from ¢g; to ¢p, 0 or 2 [0; D/50] km
H thickness of toe 1 1 km
D length of prism 100 100 km
p mass density 2200 2200 kg/m®
g gravity acceleration 9.81 9.81 m/s”

“The third column shows the single thrust with fast erosion or relief buildup and the fourth column shows the sequence of thrusting. The subscripts B, D,
N, R, U stand for the bulk or back thrust, the décollement, the normal fault bounding the forelimb, the ramp, and the upper flat, respectively. The friction
properties are defined in terms of angle ¢, and coefficient (tan ¢,) in parentheses.
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Figure 7. (a) The upper bound in tectonic force and (b) the optimum orientation of the back thrust as
functions of the shortening for the case of thrusting with fast erosion, presented in Figure 6a. Different
values of the final friction angle of the ramp ¢, are considered. The variation in friction angle from the
initial value ¢g; = 30° (0.58) occurs over a displacement of 7= 2 km, a large value selected for sake of

clarity of the graphs.

3.2. A Simple Thrust Fold With Relief Buildup

[30] Erosion is now disregarded and the relief, measured
by the distance 7, builds up in response to the shortening of
the back stop by 6 (Figure 6b). Section GCBF is trans-
formed in section GC'B'F and is accompanied by the
thrusting of section GEF so that points initially along GF
are now on G'F. The hanging wall has been translated
rigidly except for the material now in section EE'E” which
has been projected on the upper flat (interface labeled U).
Constant frictional properties are assigned to the upper flat,
chosen to be identical to the décollement for sake of
simplicity. The forelimb is separated from the hanging wall
by a normal fault dipping at 6y and corresponding to the
segment EE'. This normal fault is a migrating hinge, as the
back thrust, and is assumed to have the same properties as
those of the bulk material. The length of the upper flat L,
(distance E"E) is found by conservation of the part of the
hanging wall surface now forming the forelimb. This
projection of the hanging wall on the upper flat is of course
very simple and inspired by numerous kinematic scenarios
although different from the classical construction of Suppe
[1983]. It could be amended to describe better specific field
cases.

[31] The virtual velocity field to be considered for the
hanging wall and the back stop is identical to the one of the
first example. The new section EE'E”, defining the forelimb,
has the velocity U; with magnitude found with the hodo-
gram presented in Figure 6d. The velocity U, is oriented
with the velocity cone angle condition (¢ — 7/2) over the
upper flat. Knowing the velocity Uy of the hanging wall,
the jump Jy = U; — Uy over the normal fault is then
oriented at fy — ¢ to be along the velocity cone, providing
the constraint necessary to define the magnitude of U; and
thus the jump magnitude

sin(0y — dy + v+ ¢r)
sin(gy + Oy — dy)
sin(y + ¢g — ¢y)
" sin(¢y + Oy — ¢y)

Iy = (17)

The maximum strength theorem then provides the following
upper bound

Qcos ¢p < Sy sin gy Uy + Sy sin(y + ¢g) Uy + Ss sin ¢, Us
+ Z’U Cos ¢UZU0'L + Z’N Ccos ¢NZN‘7N -+ Z’R CcosS ¢RZR UH

+ &g cos ¢pLpp + &p cos dpLp, (18)

in which all virtual velocities (U, = U,/Uy) are obtained by
normalization with the arbitrary back stop velocity. Surfaces
S, are defined in Figure 6b. The lengths Ly, Ly, Lg, Lp, and
L, correspond to the lengths of segment EE”, EE', EG, GF,
and GC' on Figure 6b. This upper bound needs to be
minimized in terms of the three angles 6, ~y, and 6y with a
clear dependence of the morphology of the thrust on the
history of these angles. This minimization is discussed next.

[32] The dip of the normal fault 0 affects the length L,
of the upper flat, the surface S; of the forelimb and thus the
current surface Sy. The minimization in terms of 6, con-
cerns terms in (18) which are due to gravity and cohesion
over the fault and the upper flat. The latter two are likely to
be negligible once the relief » is important and for this
reason the rest of the reasoning is based on cohesionless
discontinuities. In that instance, the dip fy is found by
minimizing the work against gravity for the forelimb and
the hanging wall which reads

sin(Oy — oy +7 + ¢p)
sin(¢y + On — dy)

sin(y + Oy)
sin 9]\/

—sin(y + @g) |-
(19)

sin ¢y,

It is independent of the value of » which means that the
forelimb will grow homotheticaly during thrusting. The
angle 6y is thus constant as long as the cohesions over
the normal fault and the upper flat are disregarded.

[33] The second angle to be discussed is the dip of the
ramp ~. It is assumed that the ramp detected at the onset is
used throughout the evolution and the dip 7 is kept constant.
One could check the validity of that assumption by com-
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Figure 8. The upper bound in tectonic force as a function
of dimensionless shortening ¢ for the thrusting event
presented in Figure 6b. The force is increasing with
shortening if relief builds up. A change in the initial
optimum orientation of the back thrust by plus (dashed
curves) or minus (dotted curves) 5° has little influence in the
magnitude of the force. However, the optimum orientation
is indeed reduced by 5° for 6 = 0.022, as marked by the
intersection of the two curves in inset.

puting the least upper bound for a different orientation. This
is the strategy that will be considered in the next section
revealing that it is the root of the ramp which could change
during the evolution, marking the end of the thrust we are
studying. The third and last angle is 0, the dip of the back
thrust. The first thrust analysis with erosion has shown that
0 increases if the ramp friction angle decreases. The
building of a relief implies more weight on the ramp and
this is similar to the increase of the ramp friction angle
which leads 6 to decrease. This angle could thus have a
complex history during thrusting with consequences on the
shape of the curve FF, drawn as a straight segment in
Figure 6b. To avoid resolving this complexity, the following
strategy is adopted. First, the transition distance 67 is
assumed small compared to the characteristic size of the
structure D and set to zero for simplicity. Consequently, the
onset of the relief development is optimized in two steps.
First, the ramp dip +y is selected for the friction angle ¢p;.
Second, the back thrust dip 6 is optimized for ¢g. More-
over, the angle 6 is set constant to this initial value. A
parametric study is now presented to shed light on the
influence of the value of 6 on the upper bound in tectonic
force and thus to validate our optimization strategy.

[34] The results are presented in Figure 8 (g, set to 30°
or 15°, thick solid lines). The upper bound in tectonic force
in the presence of relief are increasing functions of the
amount of shortening, thin solid lines, starting at the same
load as for the two solutions with erosion. The dashed and
dotted lines are obtained for values of @ increased or
decreased by 5° with respect to the optimum value found
at the onset, respectively. Two observations are in order.
First, the solid line crosses the dotted line for a 6 of 0.022,
see inset of Figure 8, showing that the optimum 6 has the
tendency to decrease during relief buildup, as foreseen
above. Second, the change by plus or minus five degrees
of the back thrust orientation has little influence on the
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value of the upper bound, justifying the geometrical sim-
plifications proposed here.

[35] To conclude this section, we have presented the
kinematics for relief buildup and the theory necessary to
determine the dips of the ramp, the forelimb normal fault
and the back thrust of the first thrust. The first angle is based
on the initial friction angle of the ramp ¢p; (heritage from
the onset) while the third is a function of the final angle
¢ry (rapid rotation of the back thrust beyond the onset since
07 < D). The weakening (¢g; > ¢zy) is attached to the ramp
only and not the back thrust since material there is renewed
due to the convection from the back stop to the hanging
wall. The weakening will be shown to be fundamental for
each thrust of a sequence to have a finite life span. The relief
is composed of a forelimb separated from the hanging wall
by a normal fault, which dip 6y is found by a local
minimization of the upper bound and set constant during
the evolution. The upper bound in tectonic force can thus be
estimated throughout the life of the thrust development and
can be compared to the force necessary to initiate any new
thrust. This strategy is applied in the next section to study
sequences of thrusting.

4. Sequence of Thrusting

[36] This first objective of this section is to study the life
of a single thrust from its onset, through its development to
its arrest due to the onset of the next thrust. The main
question is the position of the second thrust compared to the
first depending on material and geometrical parameters. The
second objective is to study normal sequences of thrusting
until the first out of sequence event is detected. A sensitivity
analysis of our predictions to the material and geometrical
parameters is also included. Their values or ranges of values
are summarized in Table 1 (fourth column). Note that the
geometry of the thrusting sequences becomes sufficiently
complex to render analytical solutions cumbersome. A
numerical scheme has thus been favored and is described
in Appendix A which provides also the general expression
for the upper bound for thrust development with arbitrary
topography.

4.1. Life of the First Thrust

[37] Figure 9 illustrates the influence of the initial surface
slope « on the life of the first thrust and the position of the
second thrust. The dotted lines indicate the initial topogra-
phy of the toe of the wedge, and the position of the first
ramp and back thrust. This initial geometry is the result of
the optimization of the upper bound at the onset. The solid
lines mark the topography at the end of the life of the first
thrust and the dashed lines define the second thrust. The
lifetime of the first ramp is estimated by the distance
between the solid and dotted lines, parallel in the undis-
turbed region of the slope. Note that the critical slope for
ori = ¢ = 30° (0.58) is a. = 5.4°, this critical value being
selected for the results presented in Figure 9c. Note that the
concept of critical slope is used here and should be
understood in the sense of a critical wedge keeping in mind
that ¢5 and (3 are kept constant in this parametric study.

[38] Three observations are now in order. First, the
lifetime of the first thrust would be zero in the absence of
weakening on the ramp because of the increase in tectonic
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Figure 9. The life of the first thrust from its onset to the
onset of the next thrust for three values of the surface slope
a. The dotted lines represent the initial relief, ramp and back
thrust. The solid lines define the actual relief at the time of
the onset of the new ramp, represented by dashed lines. The
friction angles are ¢p = 15° (0.27) and ¢g,= 15° (0.27). The
décollement is horizontal, 3 = 0°. The vertical distances are
scaled by a factor of 1.4.

force during relief buildup. A new optimum thrust would be
detected infinitesimally close to the one just activated as
soon as the first amount of relief is constructed. Second, the
lifetime of the first ramp decreases substantially for decreas-
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ing . Third, the second thrust is out of sequence for the two
lowest values of «. For the first example (Figure 9a), the
slope is larger than ¢, and the wedge remains supercritical.
The last two observations are direct consequences of the
need for the topographic slope to remain everywhere close
to its critical value, a qualitative concept used by Platt
[1988] that now appears as a quantitative outcome of the
optimization. These three results could be interpreted thanks
to the imperfection analysis of section 2.5. The first thrust
produces the relief which should be now interpreted as an
imperfection close to the toe ({p < D, the left of Figure 5b
is of interest). For the angle a = 7.5° the wedge is
supercritical and failure mode 1 dominates (region 1 of
Figure 5b), ending with a thrust in the horizontal section of
the toe. For a = 6°, the imperfection is locking the thrust at
its rear and we are in region 3’ of Figure 5b. The lower
boundary of this locking range is set by «, as illustrated by
Figure 9c.

[39] The effect of weakening on the ramp is illustrated in
Figure 10 for two values of the slope . These two values
were selected such that the second thrusting is either in
normal or out of sequence for the reasons discussed above.
Initial topography and first thrust system are indicated by
the solid lines. The dotted, dashed, and dotted-dashed lines
show the topographies at the onset of the second thrusting
for three amounts of weakening ¢g,—¢g, set to 5° (0.09),
10° (0.18) or 15°(0.27), respectively (¢g; = 30° (0.58)). The
two graphs in Figures 10b and 10d show the upper bounds
in Q as a function of shortening 6 for the first ramp with the
different weakening (same style of curves as in Figures 10a
and 10c) and for the onset of the second ramp with friction
angle ¢p; (solid curve). For any shortening 6, two values of
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Figure 10. (a and c) The influence of ramp final friction angle ¢, on the life span of the first thrust and
the position of the second thrust for two values of the free surface slope «. (b and d) The predictions are
based on the comparison of the various bounds in tectonic forces as a function of the shortening. The
décollement is flat (3 = 0°) and its friction angle is set to ¢p = 15° (0.27). The vertical distances are

scaled by a factor of 1.4.
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function of the shortening. The free surface slope «
orr = 15° (0.27).

Q are calculated, the first corresponding to the currently
active ramp and the second corresponding to the initiation
of a new ramp. When the latter is lower than the former, a
new ramp is formed. Thus, the shortening at onset of the
second ramp, i.e., the lifetime of the first ramp, is defined by
the intersections with the solid curves. The main finding is
that the lifetime of the first ramp, and therefore the ampli-
tude of the relief due to the thrust fold, increases with the
amount of weakening. This relation indirectly controls an
important geological observable, the distance between the
first and second ramps. This distance is seen to increase
with ramp weakening in Figure 10, especially for the
normal sequence.

[40] The last parameter studied here is the décollement
friction angle. Results are presented in Figure 11 for an
initial slope a set to 7.5°, ¢gsset to 15° (0.27), and ¢ set to
either 5° (0.09), 10° (0.18), or 15° (0.27). The least upper
bound in tectonic force for the three values of ¢, are
presented as function of ¢ in Figure 11d for the first thrust
during its lifetime (dashed curve) and for the onset of the
second thrust (solid curve). The three intersections reported
demonstrate that the lifetime of the first thrust increases
with increasing basal friction. The reason is that the onset of
a second thrust ahead of the first one increases the length of
the basal décollement and thus the work associated with its
activation. Increasing the friction angle ¢, increases this
difference in work and requires more relief buildup before
the second thrust system becomes preferential. The more
relief is necessary, the more shortening is required, implying
a longer lifetime of the thrust. Note also that ¢, has an
effect on the position of the first ramp and the distance to

is 7.5° and the final friction angles over the ramp

the second thrust. The first ramp is more to the rear and the
distance larger for larger ¢p. The first effect is certainly
due to the necessity to shorten the activated décollement
and the second controlled by the slope discontinuity due to
the larger relief buildup, for larger ¢p. A similar influence
of a on the position of the first thrust is also observed in
Figure 9.

4.2. Sequence of Thrusts

[41] The development of several thrusts in a normal
sequence is now discussed. In all examples, the shortening
occurs until the first out of sequence event is detected. The
two slopes are set to o = 4.5°, 3= 3°, and the friction angles
to ¢p = 5° (0.09), ¢r; = 30° (0.58), dprr= 15°(0.27) so that
the critical taper is «. = 3.5° for the weakened ramp. The
wedge is thus always subcritical. Note that weakening over
the ramp is instantaneous (67 = 0).

[42] Figure 12a illustrates the complete evolution of the
sequence of thrusting in four stages. The two lines parallel
to the surface are passive markers. The thin solid segments
are the active thrust and back thrust and the dashed seg-
ments represent the deactivated ramps. Figure 12b presents
the associated evolution of the tectonic upper bound in Q as
a function of the shortening 6. The first graph in Figure 12a
presents the initial state and the first thrust at its onset. Note
that it is rooted on the basal décollement ahead of the
topographic slope break because of the small basal friction.
The evolution of the first thrust, T1, takes place until the
shortening 6, is reached. The jump recorded on the Q (6)
graph marks the activation of a second ramp, at the same
load level as for the first thrust, and the instantaneous
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Figure 12. (a) Sequence of thrusting 7 to 73 ending

with the first out of sequence thrust 7, and (b) the evolution
of the least upper bound on the tectonic force as a function
of the amount of shortening 6. The free surface slope « is
4.5°, the décollement dip is 3°, the friction angles are ¢, =
15° (0.27) and ¢p = 5° (0.09). The vertical and horizontal
distances are at the same scale.

weakening since the transition length ¢ is set to zero. The
position of this second thrust T2 at its onset is reported in
the second graph in Figure 12a. The third graph corresponds
to the arrest of the second thrust T2 and the onset of a third
thrust ahead when the shortening is 6,. The third thrust T3,
as the second, is rooted on the décollement such that the
back thrust outcrops on the upper flat where the forelimb
ends, approximately. The relief produced during the first
and second thrusting events are equivalent so that the
distance between the roots of T3 and T2 at the onset of
T3 is approximately equal to the distance between the roots
of T2 and T1 at the onset of T2. Note again the drop in the
upper bound on the tectonic force at ,, Figure 12b, because
of the instantaneous weakening. Note also the complex
topography above the oldest thrust T1, in the third graph
of Figure 12a, because points there have been displaced
either through one (T1) or two (T1 and T2) back thrusts.
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Thrust T3 ends for the shortening 85 corresponding to the
fourth graph in Figure 12a. For the first time, the new
thrust T4 is out of sequence. This new system is between
the oldest thrust T1 and the unperturbed wedge, i.e., in the
region of greatest topographic depression. Note that the
ramp outcrops exactly at the breaking point of the topog-
raphy where the back thrust of T2 was last activated. Note
also for the set of three thrusts in that sequence, that the
passive markers show substantial thickening of the rocks
which have been moved through the back thrusts to the
hanging walls. This is the consequence of our optimization
which does not find the back thrust to bisect the comple-
mentary angle of the ramp. Such assumption is classical
with usual kinematic models that assume conservation of
bed thickness but is not found here to be optimum. This
thickening has been verified experimentally with sand
[Maillot and Koyi, 2006] and further discussed for its
geological relevance [Koyi and Maillot, 2007].

[43] The next item to be discussed for this sequence of
thrusts is the dips of the ramp and back thrust, angles v and
0 for the four events (Table 2). The general trend is that
these two dips increase by 4° and decrease by 2.4°,
respectively, for the first three events. The dips for the
fourth event are more like those of the first thrust. The
increase in ramp dip signals that more of the décollement is
activated for thrusting in subsequent events. More décolle-
ment is required since the relief increases and the wedge in
that region is like a perfect wedge with a slope « larger than
the initial value. For the out of sequence event, the dips
have to be close to those of the first event since they
correspond to the same wedge in the back with an effective
toe thickness which is slightly different. Note also that the
mass in the hanging wall of T4 is larger then for T1. These
differences explain the slight change in the dips values for
the first and final thrusts.

[44] We finally examine the effect of ramp friction
weakening and basal friction on the number of thrusts and
the total shortening or total lifetime of the sequence before
the first out of sequence event. Figure 13 shows the final
topographic profiles of five examples including the refer-
ence one (fourth graph in Figure 12a is also Figure 13e)
discussed above. As a general remark on these five different
sequences, it should be noted that the back thrust (not drawn
in this figure) of thrust 7,, ;. | in a normal sequence always
outcrops on the upper flat near the front of the forelimb of
thrust 7,,. Two main quantitative differences are seen in that
Figure 13. First, for low ramp friction weakening (Figure 13a),
out of sequence thrusting occurs after a small shortening
increment. This shortening increases as the difference ¢p; —
¢ryincreases from 5° (0.09) to 10° (0.18) and 15°(0.27) from
Figure 13a to Figure 13c. This is of course consistent with
the analysis of a single thrust: the more weakening on the

Table 2. Dips of the Ramp and Back Thrust for the Four
Thrusting Events Constituting the Sequence Presented in Figure 12

Thrust Event Ramp Dip v Back Thrust Dip 6
1 32.3° 32.0°
2 33.6° 32.8°
3 36.3° 34.4°
4 32.9° 31.9°
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Figure 13. (a to c¢) The sequence of thrusting ending with
the onset of the first out of sequence event, for different
values of the friction angles ¢grand (d and e) two values of
¢p. The surface slope « is 4.5° and the décollement dips at
(3 = 3°. The vertical and the horizontal distances are at the
same scale.

ramp, the more relief is accumulated before a new thrust is
preferred. Second, small basal friction (Figures 13d and 13¢)
promotes the development of numerous and closely spaced
thrust ramps with a resulting relief buildup which is moder-
ate but rather irregular. In contrast, large basal friction will
produce a large and regular relief buildup (Figure 13c). Note
that larger values of ¢p, (e.g., 20°) leads to failure at the back
wall (sub-critical wedge) which is not investigated in this
contribution.

5. Application to the Nankai Accretionary Wedge

[45] The objective of this section is to test how the
methodology proposed above can contribute to the interpre-
tation of a concrete example and to infer with an inverse
method if two thrust systems could be concurrently activated.
The toe of the accretionary prism of Nankai, southeast coast
of Japan, and more precisely the section revealed by the
seismic reflection line NT62-8, presented by Moore et al.
[1991], is considered. Three reasons motivate this choice.
First, there is a convincing structural interpretation in the
above reference as well as in the work of Morgan and
Karig [1995]. Second, the toe of the prism is presently
undergoing a transition between an active thrust and an
incipient new structure in a normal sequence. This natural
example illustrates the sequence of thrusting studied in the
previous section in which the concurrent activity was
marked by the intersection of the Q versus 6 curves in
Figure 11d. The third reason is that there has been already a
first attempt by Schott and Koyi [2001] to study that
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structure in terms of stress distribution and mechanical
forces.

[46] The décollement, assumed straight (3 = 1.3°), the
topography and the last two thrusts marked by their ramps,
thin and thick solid lines for the formerly and the currently
active ramp, respectively, are presented in Figure 14, which
is modified from Moore et al. [1991]. The two parallel
curvy solid lines, which bound the region of facies transi-
tion (between the trench fill and the Shikoku basin sedi-
ments), provide with their offset over the ramps an estimate
of the accumulated shortening by thrusting. The ramps have
more of an s shape than the straight segments proposed
above. Moreover, Morgan and Karig [1995] advocate that
the major part of the overall shortening is accommodated by
diffuse deformation even in the foot wall of the active
thrust. Such deformation was disregarded in our analysis.
The incipient thrust, as proposed by Morgan and Karig
[1995] and presented as a dotted line in Figure 14, has been
positioned were the seismic reflectors are discontinuous in
slope in the absence of a clear offset.

[47] Koyi and Schott [2001] proposed to compare the
tectonic forces necessary for the active thrust and for the
new, incipient thrust. These forces must be equal at the time
of transfer of activity from the currently active to the
incipient system. The analytical expression for these forces
is due to Mandal et al. [1997] who proposed a simple
polynomial stress distribution over the thrust. However,
their stress field cannot satisfy point wise the Coulomb
criterion over the ramp and thus is not statically admissible
(equilibrium includes boundary conditions, the fault in that
instance). To mitigate this deficiency, they suggested that
the average tangential and normal forces do satisfy Cou-
lomb criterion, leading to an expression for the compressive
tectonic force. Schott and Koyi [2001], equating the tectonic
forces for the active and incipient thrust, and knowing the
geometry of the two thrusting systems, deduced then the
friction coefficients along the décollement to be in the range
of 5.7 to 9.1°.

[48] The above approach has definite merits despite our
criticisms of the theoretical basis. Their selection of the
active system is based on the comparison of the tectonic
forces, a statement which is also made in our analysis. The
major difference comes from the fact that neither the
incipient thrust nor the currently active thrust proposed so
far are optimum in the sense defined in this contribution.
For example, the roots of their proposed ramps were not
selected to provide the lowest upper bound in tectonic
forces. This point is illustrated for the incipient thrust in
Figure 14. There, our incipient thrust and back thrust
(optimum with respect to the dips and the position of the
root) have been drawn as dotted-dashed lines. This solution
is made as close as possible to the observations of Morgan
and Karig [1995], choosing by trial and error the friction
angle ¢g; = ¢p (27.5°, 0.52) over the ramp and the friction
angle over the décollement ¢, (11°, 0.19). These two angles
are surprisingly close to the friction angles of (26.5° £ 5°,
0.50 +0.11) and (11° £+ 5°, 0.19 + 0.09) found by Lallemand
et al. [1994] for the same section using the methodology of
Davis and von Huene [1987] constructed with the same
assumptions as Dahlen [1984]. It is of note that for the
range of friction angle over the décollement proposed by
Schott and Koyi [2001], the wedge is found supercritical
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Figure 14. The toe of Nankai’s prism according to the interpretation of Moore et al. [1991] of the
seismic line NT62-8. The dotted line is the incipient ramp according to Morgan and Karig [1995]. The
dashed line is the incipient ramp considered to build Figure 15 and is parallel to the dotted line and
displaced toward the deformation front. It is where the ramp and back thrust, shown as dotted-dashed
lines and obtained by optimization (¢p = 11° (0.19), ¢r; = ¢z = 27.5° (0.52)), take also their root.

and the new incipient thrust should appear further to the
front.

[49] This discrepancy between our optimum and the
observed incipient thrust is not too surprising in view of
the simplicity of our prototype compared to the heteroge-
neous mode of deformation outlined above. It is neverthe-
less proposed to continue our analysis, selecting the position
and the orientation of the active and the incipient ramps
according to the interpretation of the seismic profile pre-
sented by Morgan and Karig [1995], rather than according
to the optimization, except for the dip of the back thrust
which is difficult to observe on the seismic section. The
final objective is still to decide whether or not the incipient
and the currently active thrust are indeed concomitant. This
decision requires to infer the range of potential friction
angle values over the active ramp (¢gs) and the incipient
ramp (¢g;). These computations are done assuming that
these two angles can vary, independently, between zero and
90°, for a given value of the friction on the décollement. For
each set of friction angles, the upper bounds for the active
ramp (with friction ¢g) and the incipient ramp (¢g,) are
computed. A given couple (¢g;, ¢gy) is likely if the two
respective bounds differ by less than some given percent-
age. The results of the calculation are the isocontours of
relative difference (in percent) presented in Figure 15.

[50] Consider first the isocontours for ¢, = 1° obtained
for one percent relative difference in tectonic force upper
bounds. For an incipient ramp friction ¢; of say 40° (0.84),
the friction angle over the active ramp ¢ has to be between
33 and 35° (0.65-0.70) so that the relative difference in
force is less then one percent. There is thus a weakening
along the active ramp in that instance, as suggested repeat-
edly in our forward theory. This conclusion is reversed if the
décollement friction is set to ¢p = 5° (0.09). The angle ¢g,is
then contained in the interval [52°(1.28); 55°(1.43)]. There
is thus hardening which is also observed for the isocontours

of 5 percent for any point above the dotted line ¢g; = ¢py

bisecting the plot. The trend for hardening with increasing
décollement friction is confirmed with ¢p = 10° (0.18). Tt
should be stressed again that such hardening is not possible
with the theoretical evolution presented in the previous
section. It is thus legitimate to question the hypotheses
put forward to study this section through Nankai wedge. In
particular, the hypothesis which is now challenged is the
position of the incipient ramp.

[s1] Figure 16 presents the results for an incipient ramp
displaced by approximately 500 m toward the deformation
front, dashed line in Figure 14, parallel to the one consid-
ered above (dotted lines in Figure 14). For example, for a
friction angle of 10° (0.18) over the décollement, the
friction over the active ramp is now between 32 (0.62)
and 34° for ¢, set to 40°. These numbers appear to be more
realistic then the range of 70 to 74° found in Figure 15. One
observes also that the admissible values of ¢g, are on a
plateau of 7, 17, and 27° (0.67) for ¢p set to 1 (0.02), 5
(0.09), and 10° (0.18), respectively. This plateau indicates
the strong influence of ¢y and the minor influence of ¢p; on
the selection of ¢gs This minor influence of ¢g;, not
observed on Figure 15, could be motivated by analogy with
experimental results in the laboratory. The initial or peak
friction angle ¢p; is rather sensitive to the details of the
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Figure 15. Isocontours of the relative difference, in

percent, between the upper bounds in forces associated to
the active ramp (thick solid line in Figure 14) and the
incipient ramp suggested by Morgan and Karig [1995]
(dotted line in Figure 14). The three one percent contours
are for three values of the décollement friction angle. The
five percent isocontour is plotted for ¢p = 5° only.
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Figure 16. Isocontours of the relative difference, in
percent, between the upper bound in tectonic forces
associated to the active ramp (thick solid line in Figure 14)
and the incipient ramp at the deformation front (dashed line
in Figure 14). The three one percent contours are for three
values of the décollement friction angle. The five percent
isocontour is plotted for ¢ = 5°.

loading device but should not influence the long-term
structural response. Note also that the plateaux of
Figure 16 are positioned in the softening domain. This
observation is not a proof but is definitely consistent with
our hypothesis for thrust event to have a finite life span.

[52] Another hypothesis which could have been chal-
lenged to improve our predictions is the constant value of
the décollement friction ¢p. A variation of the friction angle
¢p would have very likely contributed also to reconcile the
observed and the optimum ramp position and dip. Fluid
pressure change along the décollement could provide the
physical basis for this heterogeneity [Le Pichon et al.,
1993].

[53] In conclusion, the complexity of the deformation
processes, the fluid pressure distribution and the resulting
strong heterogeneity at the toe of the prism require certainly
a more sophisticated prototype for our inverse method in
terms of geometry (shape of the discontinuities), spatial
distribution of material properties (including cohesions),
and mode of deformation (diffuse instead of localized).
Despite these limitations which forbid us from applying a
complete optimization, including especially the position of
the incipient ramps, we have proposed an inverse method to
assess the likeliness of a simultaneous activation of the
active and incipient thrusts. This likeliness is based on the
determination of possible values for the two friction angles
over the active (¢, and incipient ramps (¢g;). It has been
shown that ¢g; is most likely larger then ¢, giving more
merits to the assumption that weakening occurs over the
ramp during the early stage of its life span. Although this
softening has been largely documented in the laboratory, its
application at the field scale does deserve some attentions.
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In that respect, it is surprising to see that a moderate change
in the position of the incipient ramp has an important
influence on the range of acceptable material parameters.
The inverse method is thus very sensitive to the error on the
observables. Consequently, a statistical description of the
observables should be provided in the future to draw
probabilistic conclusions on the two friction angles.

6. Merits and Limits of the Methodology

[s4] The proposed strategy could be seen as a member of
the large family of methods relying on dissipation or force
criteria, as defined in section 1. In that respect, our method
has several advantages and three are discussed. First,
minimization of dissipation, which is not a law of physics,
is replaced by the maximum strength theorem, which
provides a theoretically rigorous upper bound on the total
tectonic force. Second, ramps and back thrust are now no
longer predefined, as in geometrical models, but are acti-
vated at the most favorable position and with the most
favorable dip at any step of the evolution, as a consequence
of the optimization of the upper bound. Third, the solution
to the optimization requires only 1-D discretization of the
surface and of the décollement. Memory requirements,
number of floating point operations per time step, and
implementation have no common measure with those re-
quired by the finite element or discrete element methods. A
simulation, as those necessary to construct Figure 13e, takes
a few tens of seconds on an average portable computer, and
about 40 Kb of memory (surface topography and décolle-
ment being discretized by 2000 points each). The code is
1500 lines of Fortran 77, without recourse to any specific
library. This numerical lightness makes it possible to
explore the parametric space in a systematic manner as
we did in the example of Nankai (approximately 25,000
optimizations of ramp-back thrust systems) or to use the
method as a forward model in an inverse analysis.

[s5] There are various limitations to the algorithms con-
structed here and three are now discussed. First, the dissi-
pation is estimated only along discrete boundaries or faults
disregarding bulk deformation which is often inferred, as in
the case of Nankai’s accretionary wedge. There, the thick-
ness of the thrusts is decreasing with age revealing hori-
zontal shortening once the thrust is abandoned. Extending
the maximum strength theorem to account for bulk defor-
mation limited by Coulomb criteria is certainly feasible
[Salengon, 1974], although adding a certain complexity to
the parametric study. It is certainly a necessary condition to
avoid the drastic transfer of activity from one thrust to the
next and thus to study two thrusts of concomitant activity.
The second limitation is the extension of the proposed
method to ductile materials which remains an open ques-
tion. The third limitation is the disregard of fluid effects,
crucial in accretionary wedges [Le Pichon et al., 1993]. One
could envision solving the fluid diffusion problem over the
evolving structure and to modify locally the strength do-
main in terms of Terzaghi effective stress. This is an
interesting research direction in view of the recent quanti-
tative assessment of the influence of seepage forces on
faulting directions monitored in sandbox experiments
[Mourgues and Cobbold, 2003].
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[s6] The theory presented relies on the least upper bound
in tectonic forces and it is proposed to use this specific
solution as a physically plausible solution. The error is
likely to be small if the kinematics is sufficiently rich to be
close enough to reality. This error could be quantitatively
estimated with a lower bound approach based on statically
admissible (SA) stress field. The methodology is a direct
application of the lower bound approach of limit analysis
[Salengon, 1974]. The main difficulty is to span with
sufficient accuracy the space of SA stress fields. The easiest
way to proceed is by numerical means and, in 2-D, it
consists of discretizing the domain of interest with triangu-
lar elements over which the stress is then linearly interpo-
lated. The resulting equilibrium element method (EEM)
then leads to a discrete optimization formulation of the
problem which solution is a safe estimate (lower bound) to
the applied load, appropriate for design in civil engineering
[Krabbenhaft et al., 2007]. The same EEM could be applied
to many structural geology problems providing an error
estimate as well as the stress distribution in folded structures
(P. Souloumiac et al., Predicting stress in fault-bend fold by
optimization, submitted to Journal of Geophysical Research,
2008).

7. Conclusion

[57] The objective of this paper was to demonstrate that
the application of the maximum strength theorem provides
estimates for the position of the active thrust, the dips of its
ramp and back thrust, and the amount of shortening accom-
modated in its life span.

[s8] The proposed methodology for the onset of thrusting
was first validated by comparing favorably the predictions
with the analytical results for the perfect triangular wedge
studied by Dahlen [1984] and Lehner [1986]. A small
perturbation is added to this perfect wedge in the form of
a triangular relief. It is shown that there is a range of angles
« for which the perturbation determines the position of the
first thrust. This locking range is larger if the perturbation is
toward the toe. If the perturbation is locking, its ends mark
exactly where either the ramp or the back thrust are
outcropping.

[s9] Finite evolution was first studied with two simple
thrusts having flat topography and décollement. The first
thrust was with fast erosion so that no relief builds up and
the geometry remains the one at the onset, except for the
shortening of the back stop. It is found that weakening on
the ramp influences the orientation of the back thrust up to
5-—10°. This is balanced in the presence of relief buildup
because the additional weight acting on the ramp leads to
the decrease of the back thrust dip. The overall dip variation
is of a few degrees only and has minor influence on the
tectonic force. This observation supports the idea that
the dip of the back thrust could be kept constant during
the study of more complex sequences of thrusts. Such
sequence at the toe of the wedge is first studied for a single
thrust which life span is defined by the amount of shorten-
ing accommodated before the next thrust is found. The first
observation is that the life time of the first thrust would be
zero unless some weakening of the ramp is accounted for.
Indeed, the relief buildup beyond the onset contributes to an
increase of the tectonic force which then becomes larger
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then the one obtained with a thrust infinitesimally close to
the active system but still at its onset. Weakening is
produced here by the decrease of the friction angle over
the ramp from an initial value ¢; to the final value ¢ryafter
a slip distance 67 set to zero in most of the reported
predictions. The introduction of this softening on the
friction angle ensures thus a finite life time for each
thrusting event since the decrease in friction leads to a drop
in tectonic force which dominates initially over the increase
necessary to lift the extra weight of the relief. It is then
logical to find that the life span of a single thrust increases if
the difference ¢r; — ¢rsincreases. Another parameter which
controls the life span of a thrust is the friction angle over the
décollement. The larger ¢, the longer is this life span. The
reason is that the onset of a new thrust ahead of the active
system requires slip over a larger section of the décollement.
Increasing ¢, increases the work associated to that extra
length and delays the time at which the new system will
become preferable.

[60] Sequences of thrusting are then considered ending
with the first out of sequence event. It is worth noting that
the out of sequence is detected despite the absence of
erosion, sedimentation, fluid pressure, or material properties
lateral variations. For all these predictions, it is found that
during the normal sequence, the next thrust has its back
thrust always outcropping close to the termination of the
forelimb of the current thrust. Increasing the friction angle
over the décollement results in a smaller number of thrust in
the normal sequence. Ramp weakening promotes a larger
distance between successive ramps and larger overall short-
ening prior to the out of sequence event.

[61] The proposed methodology is then applied to con-
struct an inverse method to detect the concomitant activity
of two thrusts at the field scale, marked by the same upper
bound in tectonic force. The section NT62-8 through Nan-
kai’s wedge, interpreted by Moore et al. [1991] and Morgan
and Karig [1995], is considered and the concomitant
activity signals the transfer from their active thrust to their
incipient thrust. The inverse method relies on the determi-
nation of the likely values of the friction angles, initial for
the incipient thrust, and final for the active system. The two
main findings are as follows. First, it is shown that the
ramps are not optimum in the sense defined in this paper
based on a simple prototype with homogeneous mechanical
properties. A heterogeneous décollement could reconcile
this discrepancy. Second, the results confirmed that the
friction over an incipient ramp is most likely larger then
over a fully active ramp. The resulting weakening, a
fundamental assumption in our work to warrant the finite
life span of any thrust with relief buildup, is thus partly
validated.

[62] The comparison of our predictions with analogue
experiments results for the onset and the evolution is now in
order. Concerning the onset, we obtain the same predictions
for the stability of the perfect triangular wedge as the exact
solution validated with analogue modeling by Davis et al.
[1983]. Two comparisons are interesting concerning the
evolution. First, the fact that the new back thrusts during
the normal sequence are outcropping close to the forelimb
of the previous thrust is observed in sandbox experiments
by Mulugeta [1988] and Mulugeta and Koyi [1992]. Sec-
ond, the spacing of the thrusts is smaller with smaller
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Figure Al.

[Nlustration of the discretization of the topography and the décollement at the base of the

numerical algorithm proposed to construct normal sequences of thrusting. (a) The mechanism of thrusting
at the onset is composed of the ramp EG, the back thrust FG and part of the décollement GC. (b) The
topographic points within the trust have been translated (with local exaggeration on top of the ramp)
according to the zone they are leaving and entering, the back stop GC'B'F, the hanging wall EGFE’, and

the forelimb EE'E”.

friction angles on the décollement. This is predicted by our
theory and described in the experiments reported by
Gutscher et al. [1998]. There is of course a great variation
in the experimental results and the analogue benchmark
proposed by Schreurs et al. [2006] is interesting to evaluate
the strong variations in thrusting (position, number, lifetime
of thrusts). In particular, the setup of the “push” and the
“pull’ type [Dahlen and Barr, 1989] are seen to provide
different intensity in the localized deformation. This differ-
ence could be due to the friction on the lateral walls [e.g.,
Costa and Vendeville, 2004]. Preliminary experimental
results (N. Cubas, Mechanics of folding in thrust-and-fold
belts and in accretionary wedges, manuscript in preparation,
2008) show encouraging results in that direction and
requires a full 3-D theoretical analysis (P. Souloumiac,
Evolution of failure mechanisms in geological structures,
manuscript in preparation, 2008), extending the present
approach.

Appendix A: Algorithm for the Construction of
the Thrusting Sequences

[63] The algorithm to produce the sequence of thrusting
relies on an incremental shortening from the rigid wall and
is composed of three main tasks. As a preliminary, the initial
topography and the basal décollement, which must be
planar, are discretized into two series of points, solid dots
in Figure Ala. The two surfaces are thus approximated by a
series of straight segments. The first task is then to deter-
mine the position and dips of the first ramp and back thrust
defined by the triplet of points (E, G, F). All triplets (E, G,
F) consistent with dips in the range [0°, 90°] are considered
by letting points E and F sweep through the discrete points
of the topography, and point G, through the points of the

décollement (Figure Ala). For each triplet, the value of Q is
calculated according to the general relation

Qcos ¢ < Sprsin(¢g +7) Uy + Sysin(¢y + H)Us
+ Ss sin(¢p + B) + ¢y cos oy LyUy, + ¢g cos QSRZRUH
+ ¢p cos ¢p Lp + &g cos op LgJg + ¢y cos ngI:NjN,

(A1)

with

o _sin(B+ ¢+ 0+ dp)
M7 sin(y + g + 0+ ¢p)
jB:Sin(7+¢R*5*¢D)

sin(y + ¢p + 0 + ¢p)
5. sin(y+ép =B +du)
N_Sin(9N+¢U+ﬁ*¢N) H7
- sin(y+ ¢p + Oy — dy)
LT sin(B+ oy + Oy — dy)

0H7

taking ¢r = ¢g; for the ramp (segment EG), and setting Ly=
Ly=L;=0. Surfaces Sy and Sg of the hanging wall and the
back stop are bounded by polygonals and their area readily
computed. The optimum triplet (E, G, F), defining the
predicted active ramp and back thrust at the onset of
shortening, is the one yielding the least 0. The second task is
the evolution of the thrust, consequence of the shortening by
the increment 6 of the back stop. This evolution differs for
points in three regions of the wedge. Topographic points
which are part of the first region, the back stop (Figure Alb),
are translated by 6; = ¢ in the direction of the décollement.
Topographic points in the second region, the hanging wall,
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are translated parallel to the active ramp by the amount 6,
necessary to ensure mass flux conservation through the back
thrust: the normal components to the back thrust of the first
and second translations are equal. Topographic points in the
third region, the forelimb, are translated in the direction of
the upper flat (same as basal décollement). The amount 63 of
translation is again determined by requiring mass flux
conservation through the normal fault separating the
hanging walls of the ramp and the upper flat (line EE’ in
Figure A1b). Points that change of region during translation
follow relative amounts of each respective translation
vector. For simplicity, the values of 0y and 6 are kept
constant as shortening progresses despite the variation of the
friction angle of the active ramp from ¢g; to ¢rs as
discussed and justified in the main text. Note that point E, at
the top of the active ramp, is immobile during evolution, but
points E', E”, and F are mobile. Areas of the three regions
(Ss, Sy, S;) and lengths of the five active bounding faults
(Lp, Lg, Lg, Ly, L) are numerically calculated, and used to
compute the current value of Q with the general relation
(Al) setting ¢p to ¢rq Before proceeding to the next
shortening increment, the third and last task considered is
the possible onset of a new thrust. This possibility is
checked in the same way as for the initial onset, by
calculating the bounds in Q associated to all possible triplets
(E, G, F), sweeping through the current topography and
with the friction angle ¢g; on the potential new ramps
(Figure Ala).

[64] It should be mentioned that this algorithm was
designed with at least two simplifying assumptions, the
first being that the upper flat is indeed flat and parallel to the
décollement. The algorithm validity is then limited to ramps
appearing frontward. The examples of evolution presented
in the main text end as soon as a new active ramp is detected
to the rear of the sequence. The second assumption is that
the ramps are planar, precluding the reactivation of old
ramps distorted if partly crossed through back thrusts. These
limitations are inherent only to this algorithm and not to the
general methodology proposed in this contribution and
could thus be amended in the future.
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versity of Salzburg) and S. Lallemant (University of Cergy-Pontoise)
throughout the development of this research are gratefully acknowledged.
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